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Biological ensembles use collective intelligence to tackle challenges together, but
suboptimal coordination can undermine the effectiveness of group cognition. Testing
whether collective cognition exceeds that of the individual is often impractical since
different organizational scales tend to face disjoint problems. One exception is the
problem of navigating large loads through complex environments and toward a given
target. People and ants stand out in their ability to efficiently perform this task not
just individually but also as a group. This provides a rare opportunity to empirically
compare problem-solving skills and cognitive traits across species and group sizes.
Here, we challenge people and ants with the same “piano-movers” load maneuvering
puzzle and show that while ants perform more efficiently in larger groups, the opposite
is true for humans. We find that although individual ants cannot grasp the global
nature of the puzzle, their collective motion translates into emergent cognitive skills.
They encode short-term memory in their internally ordered state and this allows for
enhanced group performance. People comprehend the puzzle in a way that allows
them to explore a reduced search space and, on average, outperform ants. However,
when communication is restricted, groups of people resort to the most obvious
maneuvers to facilitate consensus. This is reminiscent of ant behavior, and negatively
impacts their performance. Our results exemplify how simple minds can easily
enjoy scalability while complex brains require extensive communication to cooperate
efficiently.

collective intelligence | social insects | human behavior | cooperative transport | consensus decisions

Group living holds many advantages, of which “collective cognition” (1–4) is particularly
intriguing. This joint cognition (5) fulfills the basic requirements for cognition according
to Shettleworth (6, 7) as it allows the group to sense (8–11), integrate (12–15), and
respond (16, 17) to environmental cues. Collectively improving these abilities allows a
cooperative group to expand its cognitive capacities (5) beyond those of its individual
members. On the other hand, since large ensembles may be difficult to coordinate,
their collective efforts are often counterproductive (18–21). While tempting, direct
comparisons between the cognitive abilities of wholes versus individuals are often
meaningless because different group sizes tend to interact with the environment at
different scales. For example, there is no meaningful way to compare the cognitive
capacity of a single neuron to that of the brain. Although there are several recognized
instances of the emergence of novel cognitive tools on the collective level (8, 22), efforts
to directly and quantitatively compare an agent’s cognition with that of the group remain
quite rare (23–27).

Species that engage in cooperative load transport offer a unique opportunity for
biologically meaningful cross-scale comparisons. In these species, small loads are hauled
by individuals, while large loads are transported by groups. Naturally, grouping increases
muscle power. However, if it also enhances cognitive abilities, this can significantly
improve navigation in cluttered environments (10). Quantitatively testing for such
improvements can be done by employing physical puzzles (28, 29) and scaling them
appropriately to challenge either individuals or groups. In this work, we implement this
using the piano-movers puzzle (30, 31)—a maneuvering task in which an oddly shaped
load must be transported across a tight and obstructed environment. Being purely geomet-
rical, this puzzle is completely scalable in size. It can be made small enough to be tackled by
a single individual or scaled up to sizes that require the cooperative effort of a large group.
Such large-scale cooperative transport is extremely rare in nature and performed mainly
by people and around 1% of known ant species (3, 32, 33). Here, we study individuals and
groups of both people and longhorn crazy ants (Paratrechina longicornis) as they tackle
this puzzle.
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One Puzzle, a Variety of Solvers

We designed a piano-movers puzzle in which a T-shaped load
is to be maneuvered across a rectangular arena divided into
three chambers that are connected by two narrow slits (Fig. 1
A and B). To solve the puzzle, the load must be transported
from its initial location in the left-most chamber (a in Fig. 1C ),
through the second chamber, and into the third chamber (h in
Fig. 1C ), which is open to the outside. An “optimal solution” of
the puzzle (without any unnecessary steps) follows the sequence
of maneuvers highlighted by green arrows in Fig. 1C.

We presented scaled versions of this puzzle to both people and
ants (Fig. 1A andB). People attempted to solve the puzzle because
they were instructed to, while ants were motivated to carry the
load to the third chamber (which was open toward the nest) since
the load was made to resemble food. The puzzle was designed to
pose significant challenges for both species. People are challenged
by the precise length assessments, mental rotations, and symmetry
comprehension (SI Appendix, Fig. S1 A–C ) (34, 35) that are
required to distinguish between viable moves and dead-ends.

The puzzle is challenging for ants since their pheromone-based
communication takes neither load size versus door size nor load
rotations into account (36), and this deems a major part of their
collective navigation strategy useless.

To compare performances across species and group sizes, we
prepared the puzzle in five different sizes (SI Appendix, Fig. S2
C–H ). Ants were presented with two different scales of this
puzzle: the “small” ant puzzle was tackled either by a single ant
(n = 3 composite experiments; see Materials and Methods) or by
a small group averaging about 7 ants (n = 48), and the “large”
ant puzzle was tackled by a large group averaging about 80 ants
(n = 28). People were presented with three different puzzle sizes:
the small human puzzle was tackled by a single person (n = 61),
the “medium” human puzzle was tackled by a group of 6 to 9
people, and the large human puzzle was tackled by a group of 16
to 26 people. Snapshots from solution attempts by a selection of
solvers are shown in Fig. 1 A and B, and recordings of solution
attempts can be seen in Movies S1–S5.

To mirror the transport behavior of ants, the human and
ant puzzles maintained a similar ratio of body size to load size.
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Fig. 1. The piano mover’s puzzle. (A) Snapshots from two ant solvers: a single ant (Left) and a large group of ants (Right) during a solving attempt, with
zoom-ins on carrier ants. The load’s configuration within the puzzle is defined by its center-of-mass position (x, y) and its orientation angle �. (B) Snapshots
from two human solvers: a single person (Left) and a large group of people (Right) during a solving attempt. In panels A and B, the load in each snapshot is
emphasized in red. (C) Possible states of the load within the puzzle. Each state is representative of a subvolume in configuration space (panel D) and shares
a matching color. Solid and dotted lines connect states whose configurations are connected and disconnected (but geometrically adjacent) in configuration
space, respectively. The sequence of maneuvers comprising the optimal solution of the puzzle is highlighted with green lines and arrowheads. (D) Illustration of
the three-dimensional (x, y, �) configuration space from two different perspectives, where the colors indicate the division into the subvolumes that correspond
to the states represented in panel C. The top perspective shows a planar slice along � = 2� (or � = 0), where the shown load configuration corresponds to state
a. In the bottom perspective, the black trajectory follows the optimal solution in configuration space.
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Further, inspired by ant carriers that maneuver the load by
pulling it at their points of attachment (37), each member of
a human group was assigned to a handle connected to the load
and instructed to exclusively pull on it. The handles of the large
load contained force meters, which measured the pulling force
applied by every person throughout the attempt. In addition,
groups of people were divided into two experimental conditions:
unlimited communication (medium: n = 22, large: n = 21)
and highly restricted communication (medium: n = 28, large:
n = 20), where in the latter, the participants were not allowed to
speak or use gestures and wore masks and sunglasses to hide their
mouths and eyes. Importantly, communication-restricted people
groups and ant groups rely predominantly on communication
through forces transmitted through the load. For people, this was
the main form of allowed communication. For longhorn crazy
ants, communication in the context of cooperative transport is
naturally mediated by both haptic sensation (38) and pheromone
communication (36). However, since in the context of our puzzle,
pheromones are practically useless (see above), this primarily
leaves the ants with force-based communication. This makes
comparisons between ant groups and restricted communication
human groups especially compelling.

In what follows, we refer to each of the eight groups mentioned
above as a different “solver” (5).

Measuring a Solver’s Performance

The kinematics of a solver’s attempt can be described by the time
evolution of the load’s configuration r(t) in terms of its three
degrees of freedom, r(t) ≡ (x(t), y(t), rav�(t)), where x(t), y(t)
are the coordinates of the load’s center of mass and �(t) is the
load’s orientation angle (as shown in Fig. 1A). The orientation
is a cyclic coordinate which is multiplied by the average
distance of the load’s perimeter from its center of mass, rav (SI
Appendix, Tables S1 and S2) so that rav�(t) measures the average
walking distance of an attached carrier during load rotation.
To compare solution attempts across scales, we normalize r(t)
by the second chamber’s width dcor (Fig. 1A). The puzzle’s
“configuration space,” i.e., the set of all geometrically permissible
load configurations is presented in Fig. 1D. As illustrated by
the black trajectory (Fig. 1 D, Bottom), the dynamics of any

solution attempt can be understood as a continuous trajectory
in this space. To analyze solution trajectories, we further split
configuration space into smaller volumes that correspond to the
“states” depicted in Fig. 1C.

As a global measure of each solver’s performance, we plot the
percentage of attempts that were solved up to a given normalized
path length in configuration space (Fig. 2A, for both ants and
people) and up to a given number of attempted state transitions
(Fig 2B, for people). We find that, on average, human solvers
perform better than ant solvers (Fig. 2A). However, the full
performance distributions do display a small overlap as the best
ant solvers outperform the worst human solvers.

We find that large ant groups perform significantly better than
individual ants and small groups of ants. Although our single ant
data is more sparse, it is sufficient to demonstrate that a sequence
of successive maneuvers by single ants can indeed solve the puzzle
and to show that the resulting performance is significantly inferior
to that displayed by a large group of ants.

While restricted-communication groups of people commu-
nicate via forces as ants do, they did not show a corresponding
improvement with numbers. In fact, the opposite was true as these
groups performed significantly worse than individuals (Fig. 2B).
Groups which were allowed to communicate reverse this effect
and marginally outperform individuals (Fig. 2B).

In the following, we analyze the relevant properties of each
solver’s search trajectories and force application dynamics as
a means of relating its cognitive properties and cooperative
strategies to its overall performance.

Ant Solvers

To understand why large ant groups outperform small ones, we
first focus on their kinematics within the narrow confines of the
puzzle’s arena. When a large load, carried by a large group of ants,
collides with the boundary, it does not stop or retract (Fig. 3A).
Rather, the changes to its direction of motion and speed are
minimal (SI Appendix, Fig. S5 A and B), and it continues to
persistently slide along the boundary for an extended distance
(Fig. 3C ) (39). Conversely, when a small load, carried by a small
group of ants, collides with the boundary, it tends to lose much
of its speed (Fig. 3B), and when motion is resumed, the load

A B

Fig. 2. Performance of different solvers. (A) Cumulative distribution function of successful solving attempts as a function of the attempts’ path lengths for
humans and ants (experiment and simulation). (B) Cumulative distribution function of successful attempts as a function of attempted state transitions for single
humans and human groups with communication and with restricted communication. Since the performance of medium and large groups is similar in relation
to the performance of single humans (SI Appendix, Fig. S4B), we merged the data of these two group sizes for the sake of clarity. Both cumulative distribution
functions were smoothed using a moving average that averaged over a tenth of the maximal measured path length or number of attempted state transitions
of the respective solvers. The vertical dotted lines represent the minimal path length and number of transitions required to solve the puzzle in panels A and B,
respectively.
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Fig. 3. Motion properties and heuristics of ant solvers. Load’s path speed |v(t)| = |ṙ(t)| over time in the first chamber of (A) a large and (B) a small group in
experiment (Top) and simulation (Bottom). The red-shaded areas correspond to the load being in contact with the boundary. The blue curves additionally show
the order parameter measured in simulations (Materials and Methods). (C) Probability distribution function of persistent sliding distance, ds, normalized by the
length of the load’s long crossbar when it is in contact with the bottom of the second slit opening highlighted in panel G (SI Appendix, Fig. S5 C–F and Note 8). (D
and E) Overlaid configurations of the large and small groups, respectively, within state c in experiments. The Top and Middle subpanels show configurations in
which, after entering state c, the solver reached certain x-values for the first time. The Bottom panels show configurations at the exit from state c, either back
to state a or to state e. While large groups move in a nearly deterministic manner, shown by the smaller variability in configurations, smaller groups exhibit
greater variability. (F and G) Sample trajectories of a large and a small group, respectively, in state c in configuration space (only the volume corresponding to
this state is shown). The red and green markings correspond to initial and final configurations, respectively, of persistent sliding (scanning) segments along the
bottom of the second slit opening (marked in panel G). The overlaid red and green configurations plotted on the Right in panels F and G correspond to the red
and green markings, respectively. The blue and yellow configurations illustrate the trajectories’ entrances and exits from state c. For the large group, the load
moves persistently along the boundary, which channels it to the narrow passage leading to the next state. This persistent sliding motion, which is not aligned
with the exit direction, is absent in small groups.

often takes a direction that is different from the original one
(SI Appendix, Fig. S5 A and B). This lack of persistence causes
the small load to either quickly retract from the boundary or
exhibit much shorter bouts of persistent sliding (Fig. 3C ). These
differences between large groups and small groups align with
previous work, which showed that direction changes by a larger
group of ants require disproportionately larger perturbations
(39, 40). Single ant solvers frequently detach from the load before
reattaching to it at a different location. This randomizes the load’s
direction of motion and prevents individuals from exhibiting
extended persistent wall-sliding motion (SI Appendix, Fig. S5G).
Therefore, small groups serve as a good approximation for single
ants in both local kinematics and overall performance (Fig. 2A).

To understand the dynamics behind these kinematic obser-
vations, we employed an agent-based model of ant cooperative
transport (37, 38). The model specifies the noisy force application
rules at the level of individual ants (Materials and Methods).
In brief, this empirically verified model assumes that when an
ant attaches to the load, she transiently acts as an “informed
leader” by pulling it in the direction of the nest. After about
ten seconds, the newly attached ant switches her state to that of
an “uninformed follower” and tends to align her pulling effort
with the direction in which the load, at her point of contact, is
moving. This tendency is larger for larger group sizes. We have
previously shown that in the absence of boundaries, these rules
lead to ballistic motion for large loads and biased random walk
for smaller ones (3, 37, 38). We simulated the movement of a
load carried by ants that adhere to these rules within the puzzle’s
confines using a physics engine (41). In these simulations, the
load was subjected to forces from individual ants, as well as

normal forces applied by the walls during collisions (Materials
and Methods and Movies S6 and S7).

The simulation provides a dynamic record of the forces each
ant exerts before and during a collision. This allows us to measure
the degree to which the ants are coordinated and explains the
observed differences between the two load sizes. This was done by
considering an order parameter defined as the average cosine angle
between an ant’s pulling direction and the load’s direction of
motion at her point of attachment (Materials and Methods). The
dynamics of the order parameter show that large groups maintain
strong alignment when they are within confined chambers and
that this alignment persists even when they collide with a wall
(Fig. 3A and SI Appendix, Note 2). Intuitively, the fact that the
load maintains its motion provides mechanical coupling between
the carrying ants, which, in turn, results in high coordination
and persistent sliding motion (Fig. 3 A and C ). For small groups,
drops in load speed (Fig. 3B) prohibit efficient coordination. This
causes the ants to lose directional persistence (Fig. 3B andC )—an
effect that is somewhat more pronounced in experiments than in
simulation (Fig. 3C ), which could be explained by several effects
that were excluded from the model for the sake of simplicity
(SI Appendix, Fig. S3).

Our simulation captures more than just local dynamics. It
provides qualitative agreement with experiments in that large
groups significantly outperform the small groups (SI Appendix,
Fig. S4A). To account for the fact that the body length of an
ant, at approximately 3 mm, does not scale with the puzzle’s size,
we also ran finite-size corrected simulations in which both small
and large loads were expanded by an impenetrable thin rim sized
at 10% of an ant’s length. The corrected simulations provide
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quantitative agreement with empirical measurements of overall
puzzle-solving performance for both small and large groups of
ants (Fig. 2A).

Importantly, the high degree of quantitative agreement be-
tween experiment and simulation was achieved while assuming
simple ants with basic cognitive traits. Indeed, all simulated
ants follow local rules that do not require any large-scale
understanding of the puzzle’s geometry (beyond the location of
the next slit’s opening) and that are completely independent
of group size or geometrical context. This strengthens the
assumption that the improved puzzle-solving abilities of large
ant groups are not the result of individual cognition, but rather
emerge from interacting individuals who make no geometrical
considerations.

Translating the ants’ mechanical traits into the language
of cognition allows us to describe the cognitive faculties that
allow large ant groups to solve the puzzle successfully. The
high persistence of large groups translates into short-term
collective memory. This emergent memory leads to thigmotactic
wall-sliding behavior (Fig. 3C ). It enables the large group to
efficiently scan large areas of the wall without changing their
direction (Fig. 3F ), unlike the small ant group (Fig. 3G). They
do so until they find an opening and move through it (Bottom
panels of Fig. 3 D and E). More generally, memory allows the
large load to move more deterministically (Middle panels of Fig. 3
D and E) than the small one and to exhibit systematic motion
that allows for efficient transitions along the different regions of
the puzzle (see first two panels in Fig. 4A for experimental results
and SI Appendix, Fig. S6B for results from simulation).

To summarize, emergent cognitive faculties allow large ant
groups to employ a heuristic that is reminiscent of the well-known

“right-hand rule,” in which, upon entering a maze, the solver
slides their right hand along the wall and proceeds forward
without changing their direction. Moreover, the fact that the ants
occasionally move away from the wall and collide again at a new
location (SI Appendix, Fig. S5I ) allows them to avoid infinite
loops that may plague strict right-hand-rule followers (42).
On the other hand, small ant groups exhibit random-walk-like
dynamics that include futile searches and trapping in dead ends.
The superiority of the large group heuristic is in line with previous
research on algorithms for maze solving (43–45).

Human Solvers

We have seen that large groups of ants often outperform small
ones by following the most direct path when transitioning
between states (Fig. 4A and SI Appendix, Fig. S7B). The motion
exhibited by people, either as individuals or in groups, displays
even higher efficiency as these solvers tend to take the direct
path while crossing any configuration space subvolume that
corresponds to the states of Fig. 1D (SI Appendix, Fig. S6C ).
Indeed, a meaningful description of human puzzle-solving
behavior can be obtained when considering these states and
assuming that people reduce the three-dimensional configuration
space to a mental graph-type representation wherein states serve
as the nodes (Fig. 1 C and D). As an example, the node that
corresponds to state a comprises all configurations in which
“the load is fully contained in the first chamber.” When at
a node, people have no direct means to distinguish which
neighboring nodes in configuration space are truly connected
to it (34, 35). Therefore, edges represent possible connections
between physically adjacent states, irrespective of whether they

A C D

EB

Fig. 4. Motion properties and heuristic of human solvers. (A) Two-dimensional heat maps showing the probability of being a certain normalized distance from
target state c. The probability is shown as a function of the fraction of path length traveled from the initial entry to state a after exiting state b (see path marked
in yellow in panel B). Segments of small and large ant groups and medium-sized human groups are shown. (B) Schematic of the configurations traversed during
a sample single human’s attempt illustrating the depth-first-search method. The dotted line shows the order of configurations traversed while succeeding
and failing at transitioning between connected and disconnected states, respectively. (C) Probability of attempting to traverse the edge leading to the greedy
option (Top) or the indirect option (Bottom) when encountering five common decision forks in the puzzle consisting of two untested edges. Possible edges
are depicted by a starting configuration (black load) and ending configurations (green and red loads for edges that are part of or deviations from the optimal
solution, respectively) and labeled with state1 → state2 or state1 6→ state2, for existent and nonexistent edges, respectively. Data for different human solvers
in experiments and simulations are presented. The simulation’s error bars were smaller than the size of the marker. (D) Time until first motion of groups of
people with and with restricted communication at the start of their attempt. The labels greedy and indirect refer to the top and bottom options shown in the
leftmost decision fork in panel C. (E) Average force of pullers toward and away from the exit direction in red and blue, respectively. To allow for motion against
the exit direction (t = 0) when retracting from a dead end (e.g., state b) and avoid tugs-of-war, pullers toward the exit (red) must release their pull. This occurs
before motion begins in communicating groups (Top) and after it begins in groups with restricted communication (Bottom). The forces were measured using
force meters at every participant’s attachment location.
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are actually connected in configuration space. In Fig. 1C, these
connected and disconnected edges are represented as solid and
dotted lines, respectively.

As people’s representation of configuration space possibly
contains disconnected edges, they resort to a trial-and-error tactic
to find a sequence of nodes that connect the initial to the final
node: when in a certain “decision node,” people attempt to reach
an adjacent “target node” by moving along the shortest path
between them in configuration space (Fig. 4A and SI Appendix,
Fig. S6 A–C ). This demonstrates people’s understanding that
the shortest path from initial to final configuration consists of
shortest paths between connected states in configuration space.
If the edge between the decision and target node is found to
be missing, they mentally prune it (Fig. 4B). This exploration
employs long-term memory as people rarely attempt to traverse
a previously pruned edge (SI Appendix, Fig. S7A). Importantly,
this is true regardless of the particular location they returned to
within the decision node after pruning (SI Appendix, Fig. S6D).
This further supports the hypothesis that people aggregate large
components of configuration space (states) into discrete nodes.

While all single-person solvers search the graph in this manner,
there is still significant variation in their overall performances
(Fig. 2B). There are several considerations that people may take
into account when deciding which edges to traverse. At node
a, for example, geometric considerations can affect the decision
to pass either the large or small crossbars of the T-load through
the first slit. Another consideration is that states e and e′ are
equivalent (SI Appendix, Fig. S1B) and that, therefore, only one
of them should be tested. Finally, the left-to-right symmetry of
the puzzle as a whole (SI Appendix, Fig. S1C ) means that if the
edge b→ e was found to be missing, then the edge e→ g must
be missing as well and can be mentally pruned without actually
trying to cross it. Applying such considerations can explain at least
some of the variations between different solvers (Fig. 2B). Given
these variations, we find that 91 ± 1% of the attempted node
transitions observed in people concur with a depth-first search
(DFS) (46) heuristic on the tree graph constructed from the
original search graph shown in Fig. 1C by deleting nonexistent
edges and adding dead-end nodes (Fig. 4B).

When individuals group to move a load together, the
aforementioned variations make the next move nonevident
and require consensus-forming mechanisms. These mechanisms
can be expected to vary between groups with communication
and restricted communication as is, indeed, reflected by their
qualitatively distinct decisions. The nature of this distinction
becomes evident by focusing on decision forks in the graph and
categorizing the possible target nodes into one of two types: The
“greedy option” is the node that, if reached, allows the load to
extend the farthest in the exit direction (top configurations in
Fig. 4C ). The “indirect option” is the other option (bottom con-
figurations in Fig. 4C ). We find that, across all five decision forks,
groups with restricted communication choose more greedily than
individuals and communicating groups (Fig. 4C ). These greedy
decisions lower the overall performances of groups with restricted
communication (Fig. 2B).

To study why groups with restricted communication tend
to act greedily, we focus on the mechanisms they employ to
form consensus. We find that, at the beginning of an attempt,
loads that are carried by groups with restricted communication
commence motion within less than a second (Fig. 4D). The
individual force-meters show that similar to ants, once motion
begins, all group members tend to align their pulling efforts with
it (Fig. 4E) (47). Further, we find that during the transition
between nodes, the load does not change its direction and does

not deviate from the shortest path (Fig. 4A). These mechanical
observations lead us to suggest a one-shot majority vote for groups
with restricted communication: at a decision fork, all group
members that are not restricted by the walls and can pull toward
at least one of the two options (SI Appendix, Fig. S7B andC ) start
exerting a force toward their chosen target node. Summing up
the force vectors of all initial pullers is equivalent to a majority
vote among this leading subgroup (or oligarchy, see ref. 48).
Once motion commences, all other group members quickly
comply with this direction and transport the load to the chosen
target node.

This is a social combination model (49, 50) as people do
not discuss the options but, rather, collectively choose a course of
action that is based on individually formed opinions. To complete
the model, one must specify the initial pulling directions applied
by members of the leading subgroup. A natural guess would be
to sample these directions from the decisions taken by individual
solvers at the same decision point. However, this guess is
inconsistent with our observations since groups with restricted
communication tend to choose greedily even in nodes where the
majority of individuals prefer the indirect move (e.g., right-most
decision fork in Fig. 4C ). Clearly, majority-based votes cannot
flip group preferences in this fashion. We, therefore, add a greed-
iness parameter p to our model. Members of the initial subgroup
pull toward the node they would have pulled to, had they been
alone, with probability (1 − P), and to the greedy option with
probability P. Fixing the value of the greediness parameter at
P = 0.2 provides a reasonably good fit for both medium and
large groups in nine out of ten decision forks (Fig. 4C ).

We can hypothesize on the factors that lead people to increase
greediness within a group with restricted communication. One
reason may be a result of local, limited perception of the puzzle.
Recall that the size of the puzzle is scaled to the size of the
group. Hence, unlike a person who solves the puzzle alone, each
member within a group occupies a small area of the puzzle, which
induces a notion of locality. Since people in groups with restricted
communication are unable to efficiently share information from
different parts of the puzzle, they react mostly to the opening
that is closest to them (51) and pull the part of the object they are
holding toward it. These local forces are consistent with motion
toward the greedy option.

Greediness may also be related to the empirical observation
that when debate is prohibited, people tend to reach a consensus
quickly (Fig. 4D). In this case, in line with the notion of
groupthink (21, 52), people tend to forsake their personal
opinion and promote a different one, not because they think
it is the better option, but because it is the option they believe
is most likely to be independently chosen by others. The fact
that a single fitting parameter in our model suffices to describe
people for both group sizes suggests that small group sizes are
sufficient to induce the maximal groupthink effect. It may be
the case that this assessment of the majority opinion (53) is,
in fact, the minority opinion (see rightmost decision fork in
Fig. 4C ), which is reminiscent of the social phenomenon of
pluralistic ignorance (54) typically demonstrated with regard to
more complex social issues. Being based on spatial considerations,
the greedy option can be expected to be better than another
arbitrary simple consensus. Thus, by choosing the greedy option,
the group is able not only to reach a fast consensus but also
a reasonably good one. Finally, it is important to note that
reaching a suboptimal consensus is not detrimental; even if this
attempt leads to a dead end, the failure becomes the new common
knowledge across the group (55), and this facilitates consensus
on the next decision.

6 of 11 https://doi.org/10.1073/pnas.2414274121 pnas.org

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 6
0.

24
0.

32
.1

94
 o

n 
Ja

nu
ar

y 
29

, 2
02

5 
fr

om
 I

P 
ad

dr
es

s 
60

.2
40

.3
2.

19
4.

https://www.pnas.org/lookup/doi/10.1073/pnas.2414274121#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2414274121#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2414274121#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2414274121#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2414274121#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2414274121#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2414274121#supplementary-materials


Communicating groups reach consensus in a very different
manner: at the beginning of a solution attempt, and before
any motion commences, they tend to spend tens of seconds
conversing (Fig. 4D). In contrast to groups with restricted
communication, communicating group members adjust their
pulling forces with the direction of the desired target node
even before motion begins (Fig. 4E). They then maintain this
agreement until the target node is reached (Fig. 4A). The ability
to discuss frees the group from the urge to make a single-shot
decision and they can, instead, take their time to advocate for
less obvious, but more accurate choices toward a joint decision
(Fig. 4D and SI Appendix, Fig. S6E). The fact that a joint decision
to move to the indirect option takes significantly longer than a
decision to move greedily (Fig. 4D) strengthens the claim that
communication is crucial for forming a consensus around a less
obvious choice.

In most decision forks, the decision probabilities exhibited by
communicating groups are similar to those of a typical individual
solver (Fig. 4C ). A reasonable mechanism to implement this is
that communication is used to elect a random group member
and follow her lead toward the option she would have chosen
if alone (supported by personal observations; see SI Appendix,
Note 6). The end result is that communicating groups perform
similarly to individuals (Fig. 2B). We note that, in the context
of a confusing puzzle where, in all decision forks, the majority
of individual choices are wrong, this tactic, intuitively adopted
by groups, is strictly superior to majority decisions (SI Appendix,
Note 10). It is interesting that groups of people naturally revert
to this behavior. On the other hand, random leader choice or
an equivalent tactic is worse than electing the most competent
leader as, statistically speaking, a communicating group will
attempt to traverse 35% more edges during a solution than its
best-performing individual (SI Appendix, Note 9). Therefore,
communication does not significantly help the group distinguish
a competent member from the rest and follow her lead.

Nevertheless, the communicating group does marginally
outperform its average group member (Fig. 2B). We find
that the primary factor for this improvement stems from the
communicating groups’ ability to specifically escape the dead-
end state b without exploring all its cul-de-sacs (SI Appendix,
Note 7). Apparently, this is done as some group members use
speech to demonstrate (56) that this is a dead-end before further
futile state transitions are attempted. This implies that a large
enough minority of participants can use discussion to sway the
group from the common knowledge opinion toward a nontrivial
shortcut (48, 50).

Comparing Ants and Humans

The physical realization of the piano-movers problem provides
us with two rare opportunities. It allows us to compare problem-
solving skills and performances across group sizes and down to
a single individual and also enables a comparison of collective
problem-solving across species. Here, we focus on comparisons
between group sizes within each species and between ants and
restricted communication groups of humans, where the latter
enables a meaningful cross-species comparison.

Large ant groups exhibit emergent persistence, which ex-
pands their cognitive toolbox to include short-term memory—a
building block of cognition (6, 7): the memory of the current
direction of motion is temporarily stored in the collective
ordered state of the transporting ants, analogous to ordered
spins in statistical mechanics (38). Thus, collective memory
is an emergent feature rather than an individual trait. Similar

examples in which grouping leads to newly acquired cognitive
abilities are rare. One example comes from fish that can expand
their sensing range by grouping, which allows the school to
respond to environmental gradients that occur over long length
scales (8). Another example comes from fish that modulate their
responsiveness to risk by modifying the spatial structure of the
group (22).

Emergent memory allows groups of ants to perform near-
deterministic, persistent scanning of the wall, which poten-
tially leads them through shortest paths in search space. This
emergent boundary-following heuristic enables large ant groups
to significantly outperform small groups as well as individual
ants. Memory, directed motion, systematic search, and the
employment of heuristics are all attributes of human solvers.
Thus, the expansion of their cognitive toolbox allows large groups
of ants to confront the puzzle in ways that resemble human
solvers.

Cooperative transport offers the rare opportunity to exper-
imentally analyze human large-scale (>20) cooperation in the
context of a natural behavior with a clear common goal. As a
natural behavior, this collective task incorporates numerous
aspects of collective problem-solving (48–50, 54, 56–58) whose
joint effect is unpredictable. Different from ants, people suc-
cessfully tackle the puzzle as individuals, but grouping raises an
obstacle since consensus is required for efficient motion.

Communicating groups of people spend significant time
discussing and deciding on their next move and, by this, display
similar performance to individuals. When communication is
restricted, people completely replace their social-communication
(59) debating heuristic with a faster, social combination heuristic.
In this case, they tend to act differently from their thought-
over opinion (21, 52) and pull toward the lowest common
denominator, the greedy option, as would a newly attached
informed ant (37). Once the load starts moving, people in
restricted communication groups simply align their pull with its
motion. This abandonment of their individual cognitive abilities
is, once more, reminiscent of the collective ant behavior (37, 38).
As such, when tackling the puzzle with restricted communication,
large groups of people display deteriorated performance by
adopting some ant-like properties (36, 37). This deterioration
is lifted if communication is allowed.

A general understanding of collective problem solving by
animal groups can benefit from comparing extreme examples:
People stand out for individual cognitive abilities while ants
excel in cooperation. In this work, we sharpened the comparison
by designing experimental conditions that impose similar, force-
based communication on both species (restricted communication
condition in humans).

While advanced cognitive capabilities have been shown in
ants (60), the agreement between empirical measurements and
our agent-based model implies that within our puzzle, individual
ants do not employ any large-scale geometrical consideration (see
also ref. 36). Therefore, we assume that while longhorn crazy
ants discern the context of cooperative transport, they make no
distinctions regarding the geometry of the specific problem and
always apply the same individual scale behavioral rules (37).

This uniformity ensures that, within a given context, all
participating ants operate within the same framework, and this
can facilitate cooperation (61) and efficient scaling of cognitive
capacities. Such scaling is crucial given the inherent cognitive
limitations of a single ant (36). Importantly, the ants’ joint efforts
lead to an emergent heuristic of wall sliding, which for large
enough groups, proves to be highly robust and effective for an ex-
tremely wide range of complex environments (10, 36, 39, 40, 62).
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People are more flexible in selecting tools from their cognitive
repertoire and can finely adjust their problem-solving tactics to
suit the particular task at hand (63–66). While this flexibility
can enhance individual performance, it inevitably results in
interpersonal differences (e.g., ref. 67) that may require more
advanced communication to avoid worsening collective perfor-
mances (Fig. 2B) and allow for effective cooperation (68, 69).

These differences between ants and humans illuminate two
evolutionary trajectories that differ in the way cognitive abilities
are allocated between the individual and collective levels. The
comparison between them suggests several research directions:
theoretical study is required to establish the trade-off between
complexity at the individual scale and the ease of cooperation
at the group level (see ref. 70 for a similar effort). Comparative
studies across phylogenetic trees can be used to explore empirical
examples of this trade-off. The lessons learned may be useful in
the design of cooperative robotic groups (see, for example, ref. 71)
and, perhaps, help us understand why of all the social animals,
only ants and people excel at cooperative transport.

Materials and Methods

Setup for Experiments with Ants. The small ant arena was built by 3D
printing the floor and boundaries of the arena using white polylactic acid
(PLA). Additionally, a transparent cover was placed on top of the arena that
prevented ants from carrying the load over the arena boundary. Between the
two slits, another transparent layer was installed to prevent ants from slanting
the load while pulling it through the slits and, thereby, “cheating.” A schematic
of the resulting arena is shown in SI Appendix, Fig. S2A, and two photographs
of a single ant and a small group of ants during a solving attempt are shown in
SI Appendix, Fig. S2 C and D, respectively. The large ant arena was built by first
laser-cutting rectangular pieces of plastic with appropriate dimensions to form
the floor and boundaries of the arena. Then, these pieces were glued together,
which constituted the large ant arena. The arena contained holes opening to a
room left of the first chamber, where a recruitment ring could be placed. The ring
could be used to increase the number of ants in the arena during the experiment
to sustain cooperative transport of the load. A schematic of the resulting arena
is shown in SI Appendix, Fig. S2B, and a photograph of a large group of ants
during a solving attempt is shown in SI Appendix, Fig. S2E.

The loads appropriately sized for the small and large arenas were 3D printed
with red polylactic acid (PLA), rendering thin, rigid bodies. These are displayed
in their respective arenas in SI Appendix, Fig. S2 C–E. The load of the large arena
consisted only of a T-shaped rim in order to preserve a similar circumference-
to-weight ratio to the load of the small arena, as the number of ants attached
scales roughly linearly with the circumference. The measurements of all resulting
arenas and loads are listed in SI Appendix, Table S1.

Before the experiments, the boundaries of the arenas were covered with
Fluon to prevent ants from escaping over the boundary. We incubated the loads
in cat food overnight and rubbed canned tuna on them, which made them seem
like attractive food items to the ants.

Procedures during Experiments with Ants. To conduct experiments with
either single ants or small groups, we positioned a small arena next to a nest of
P. longicornis ants at the Weizmann Institute of Science in Rehovot, Israel. For
experiments involving large ant groups, a larger arena was used instead. For all
group sizes, the respective arena was oriented such that its x-axis, as defined
in SI Appendix, Fig. S1A, pointed toward the nest entrance. We mounted a
Canon EOS 550D camera above the arena using a rolling stand, as shown in
SI Appendix, Fig. S2 A and B. The camera was set to record 50 frames per second
at a resolution of 1280×720 pixels. We then recruited ants into the arena
by placing a recruitment ring rubbed with canned tuna in the first chamber
of the arena. Once enough ants were present in the arena and they began
cooperatively transporting the recruitment ring, we removed the ring. Then,
we started recording the arena with the camera and presented a T-shaped
load to the ants in the first chamber in the initial configuration illustrated in

SI Appendix, Fig. S2B. Ants were able to attach to the thin rim of the load and
transport it, as shown in SI Appendix, Fig. S2 C–E.

During single ant experiments, an ant was allowed to enter the arena if
there was no other ant already present. If there was, the experimenter blew the
newly arriving ant away using his/her breath. During experiments with small
and large groups of ants, ants were not restricted from entering the arena. In all
experiments, ants were allowed to exit the arena at any time. Possible reasons
for exiting the arena included loss of interest in the load and recruitment of
more ants to the load. The flux of newly attaching ants in experiments with small
and large groups replaced the detaching ants, generally maintaining a sufficient
number of ants to sustain cooperative transport. The numbers of ants involved
in carrying are given in SI Appendix, Table S1. If the flow of ants to the load
in the large arena was too low to sustain cooperative transport, we placed the
recruitment ring in the room left of the first chamber to increase the number of
ants in the arena. An attempt was considered successful once the load reached
a configuration where it was entirely within the third chamber, which is labeled
in SI Appendix, Fig. S2B. If the puzzle was not solved by a small or large group
within approximately 30 min, the experiment was terminated and considered
an “unsuccessful attempt.” It proved difficult for a succession of single ants in
the arena to carry the load for a significant distance within 30 min. Therefore,
we did not terminate the experiments with single ants after 30 min, and instead
allowed carrying for multiple hours, during much of which there was no ant
present in the arena. Further, two of the three single ant experiments spanned
multiple days, where the load was reintroduced in the state that the attempt
was last terminated in order to reach longer path lengths. For this reason, we
call them “composite experiments.” The sparsity of the data is due to single ants
commonly leaving the setup in order to recruit further ants. This is very much
in line with our results that this species has evolved to greatly benefit from its
collective efforts.

Exemplary recordings of a succession of single ants, and small and large
groups of ants attempting to solve the puzzle can be seen in Movies S1–S3.
Experiments were conducted using five different colonies over the course of 3 y.

Setup for Experiments with People. The three arenas for people, whose sizes
we refer to as small, medium, and large, were built at the Weizmann Institute
of Science in Rehovot, Israel. The boundaries exceeded 2 m in height and were
constructed using metal grids overlaid with tarps to prevent participants from
seeing through the boundaries. The load of every arena consisted of a T-shaped
plastic tube on a cart with wheels. The tubes had pink strips of tape glued to them
for the sake of easier tracking of the load (see Fig. 3B and SI Appendix, Fig. S2
F–H). The dimensions of the arenas and loads are listed in SI Appendix, Table S1.
The arenas had gravel floors, which were flattened to ensure easy rolling of the
carts. Loads of the medium and large arenas had handles made of skinny, rigid
handles. These were connected to fixed locations around the T-shaped tubes
using webbing strap. These handles served as attachment sites for participants
from which they were able to pull the load. For some experiments with groups of
people, force meters that were integrated into the handles were used to measure
the pulling force applied by every participant throughout the attempt. The force
meters were taken from devices originally designed to measure a travel suitcase’s
weight. They were integrated into a custom-built data acquisition system that
wrote the measured force at a rate of m 2 Hz onto a hard drive. Cameras were
installed above all three arenas to record the experiments. The cameras recorded
the attempt at a frame rate of 30 frames per second, and snapshots of these
recordings are shown in Fig. 3B and SI Appendix, Fig. S2 F–H.

Procedures during Experiments with People. To conduct experiments with
either a single person or a medium-sized or large group of people, a guide
was introduced to the participants. Participants included children ages 10 and
above and adults who responded to an advertisement at the Weizmann Institute
of Science, and other various groups from across Israel. Every participant wore
a bright green hat during the solving attempt. Participants of groups with
restricted communication additionally received face masks and sunglasses to
prevent communication through lip and eye movement. The guide brought
the participant(s) to the arena, where the load was presented in the initial
configuration in the first chamber. The guide explained that the load had to be
moved to the third chamber. Single people solving the puzzle in the small arena
were allowed to pull and push the load. Participants in a group in the medium
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and large arena were only allowed to influence the load motion by pulling from
a handle assigned to them. For groups with restricted communication, verbal
and gestural communication was forbidden. For further details on the exact
instructions given, see SI Appendix, Note 4.

Once all participants’ questions were answered, the guide signaled to the
group that they could start moving the load. During the attempt, the guide only
interfered when participants violated one of the mentioned rules by reminding
them of the relevant rule. The solving process was filmed from the top. All
attempts by people were successful, and none exceeded 30 min. Exemplary
recordings of a single person and a large group of people who were not allowed
to communicate solving the puzzle can be seen in Movies S4 and S5, respectively.
Experiments included a total of 1,251 participants. We received permission to
work with humans from the Weizmann Institute of Science and the European
Union. Ethical approvals for human experiments were given by the Weizmann
Institutional Review Board (IRB-Education), by the Israel Ministry of Education
Chief Scientist, and by the Ethics Unit of the European Research Council.
Experiments were conducted in accordance with their guidelines. Informed
consent was obtained from all human participants before the experiments.

Video Analysis. From the recordings of experiments with ants, the center
of mass of the load’s position x, y and orientation � was extracted in every
frame using a custom-written MATLAB program (MathWorks; version R2019b).
The program was based on detecting the red load’s pixels by thresholding. It
then determined the load’s configuration by matching the detected pixels to a
template in the form of the load’s shape.

From the recordings of experiments with people, another custom-written
MATLAB (MathWorks) program was used to extract the center of mass of the
load’s position x, y and orientation � from every movie frame. This program first
removed the camera distortions from a given frame. Then, using thresholding,
the green and pink areas that corresponded to the participants’ hats and load
markings were found, respectively. Finally, a k-means algorithm was used to
find the load’s configuration (x, y, �) in every frame.

The load tracking results were manually corrected if necessary. Further, in
order to reduce any small jitters, we smoothed the tracked coordinates in the
following manner: we applied a median filter to every coordinate x, y, and �
using a window corresponding to Δt = 1 s and 0.25 s for single and groups
of ants, respectively, and Δt = 2 s for humans. Within these time frames, no
significant velocity changes are expected. Subsequently, we applied a Gaussian
filter with window size corresponding toΔt/5. This effectively eliminated jitters
while maintaining the authentic motion of the load.

Simulations of Ant Solvers. To gain further mechanistic insight into the
performance gaps between large and small ant groups, we ran simulations of
ant solvers based on an established statistical physics model for ant cooperative
transport (3, 37, 38). Movies S6 and S7 show animations of simulations
illustrating a small and a large group of ants solving the puzzle. In this
empirically motivated model, attachment and detachment dynamics of ants
establish a cohort of carriers on the load, and their combined pulling forces—
whichtheyapplyalongtheirbodyaxes—governtheload’smotion.Newlyattached
carriers are transiently informed about the direction of a stationary target (the
nearest chamber exit in our puzzle setup) and introduce deterministic directional
information into the carried load by directing their pulling efforts toward this
target.Oncesheforgetsher initialknowledgeof thetarget’sdirection,eachcarrier
stochastically switches between the roles of an uninformed puller and a lifter until
she detaches. In this role-switching and in the alignment of pullers, uninformed
carriers are mechanically coupled through the rigid load. This coupling leads
to an uninformed carrier being more likely to become a puller the more she
is aligned with the load’s local direction of motion at her point of attachment.
In addition, uniformed pullers align their pulling efforts with this local motion.
These effects lead to emergent coherent motion of the carried load, which is
repeatedly steered toward the target due to the transient bits of directional
information introduced by informed carriers. More details on the simulations
are given in SI Appendix, Note 1.

GeneralizedOrder Parameter. While in the previous studies (3, 37, 38), order
was synonymous with linear persistence, a solver’s performance in our puzzle

relies on both linear and rotational persistence. To measure order in our ant
solver simulations in a way that accounts for persistence in both translation and
rotation, we define an order parameter M, at time t, as

M(t) =
1

Np(t)

∑
i

np
i pi(t) · v̂ i

loc(t), [1]

where Np is the total number of pullers (informed and uninformed), pi is the
direction of force applied by the puller at attachment site i, v̂ i

loc is the direction of

local velocity sensed at site i, and np
i = 1 if site i is occupied by a puller (np

i = 0
otherwise). For more details on the simulations, see SI Appendix, Note 1. Since
M gauges the alignment of pullers with local velocities on the edges of the load,
it can capture not only the alignment of pulling forces along the direction of load
translation but also the order in puller arrangements that promote persistent
load rotation.

Path Length. The path length traversed during a given time period is defined as
the cumulative distance traversed in configuration space. This is a proxy for the
average path walked by a participant connected to the load. In order to compare
path lengths between solvers moving within the puzzle arenas at different scales,
we normalize the path length by a scaling factor, namely the distance between
the two slits, dcor, marked in Fig. 1A, calculated by

1
dcor

N∑
n = 1

√
(xn + 1 − xn)2 + (yn + 1 − yn)2 + r2

av(�n + 1 − �n)2, [2]

where (xn, yn) is the load’s center-of-mass position, �n is the load’s orientation
angle at frame (or time step) n and N is the total number of frames (or time
steps).

The cumulative change in orientation was multiplied with the average
distance of the load’s periphery to the center of mass rav, which scales linearly
with the load and arena size. Given that ants and people move with the load
while attached to the periphery, the length rav�(t) meaningfully takes into
account the distance walked by an average carrier when the load rotates, as the
load rotates by an angle � around its center of mass. We numerically calculated
rav by averaging over the distance of equally spaced points around the load’s
periphery to the center of mass.

The Load’s Path Speed. The load’s path velocity at a given time corresponding
to index n is defined as

vn =
1

tn + 1 − tn

 xn + 1 − xn
yn + 1 − yn

rav(�n + 1 − �n)

 . [3]

The load’s path speed is the Euclidean norm of the path velocity, vn = ||vn||.

States and Transition Regions. Configuration space is split into states as
illustrated in Fig. 1 C and D. Every permissible load configuration is part of a
state, while some load configurations are additionally part of so-called transition
regions, which are defined in SI Appenidx, Table S3 and illustrated in SI Appendix,
Fig. S1 D and E. An attempt to move to an adjacent yet disconnected state was
assumed when participants moved to the transition region within their current
state that was close to this target state.

We differentiate between transition regions bf1 and bf2, shown in SI
Appendix, Fig. S1E, since we frequently observe people distinctly trying to
pass from state b→ f from two symmetric subregions within the region in state
b adjacent to state f . We, therefore, split this region into two separate regions,
namely bf1 and bf2, in order to penalize both unsuccessful edge traversal
attempts (SI Appendix, Table S3).

Number of Attempted State Transitions. We assign a state, and potentially a
transitionregion, toeveryconfigurationofasearchtrajectoryusingtheconditions
defined in SI Appendix, Table S3. We then sum up the number of successful
and unsuccessful state transitions in the resulting list of states and transition
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regions. Successful and unsuccessful transitions are identified by counting the
number of stays in states and transition regions, respectively, that last longer
than one second. This process provides us with the number of attempted edge
traversals of the trajectory. An exemplary succession of attempted edge traversals
is illustrated in Fig. 4B.

Cumulative Distribution Function of a Set of Attempts. To generate the
cumulative distribution functions for sets of solving attempts, as shown in Fig. 2
and SI Appendix, Fig. S4, we initially compute the desired performance measure
for every individual attempt of the set. This performance measure r is either the
cumulative path length during the attempt (Eq. 2), or the number of attempted
edge traversals. In both cases, a larger value of r in a specific experiment
corresponds to poorer solving performance.

We find the largest value rmax of the subset of successful attempts, and
exclude all unsuccessful experiments that have a value smaller than the rmax
from the set of attempts. This renders a set of n′ attempts. Then, we determine
100 values, ri, which are equally spaced between 0 and rmax. For every ri, we
divide the number of successful attempts that have better performance, meaning
r < ri, by n′ rendering the fraction of success pi at ri. We then calculate the error

according to
√

pi(1−pi)
n′ . These values (ri, pi) and their corresponding error,

constitute the cumulative distribution function of a set of attempts.

Discretized Configuration Space. Configuration space refers to the set of
all configurations r = (x, y, �) in which the load does not overlap with the
arena boundary. We compute this space numerically on a regular grid of space
points lying inside the following boundaries: x ∈ (0, slit2 + load length), y ∈
(0, arena breadth) and � ∈ (0, 2�). The lengths are illustrated in the arena’s
geometry in SI Appendix, Fig. S1A. For every volume element, we tested whether
the corresponding configuration is permissible, resulting in a binary array, which
we call discretized configuration space. The grid sizes of the spaces for every
puzzle are listed in SI Appendix, Tables S1 and S2. They were chosen such that
they resolve all connections between large components in configuration space.

Distance from the Boundary, and Criteria for “Contact”. We calculated
the Euclidean distance from the boundary for every element in the discretized
configuration space using the distance_transform_edt function from the Python
package scipy.ndimage. With this map of array elements (configurations) and
their respective distances to the boundary, we could determine the distance
along a trajectory segment. This process was carried out for the histogram
depicted in SI Appendix, Fig. S5H.

For data based on experiments shown in Fig. 3 A and B and SI Appendix,
Fig. S5 A, B, and I, we tracked contact manually by watching the recordings.
Unless noted otherwise, all other contact detection was done in the following
manner: when the trajectory was in a configuration whose corresponding array
element had a distance smaller than a set threshold dcontact, the load was
considered “in contact” with the boundary and vice versa. For data based on
simulations shown in Fig. 3 A and B and SI Appendix, Fig. S5 A and B, we used
dcontact = 0.05 mm.

Shortest Path between Nodes. We quantified how closely a solver adhered
to the shortest path between states by analyzing all trajectory segments of
small groups of ants and medium-sized groups of people in which the solver
moved from state b to state a and entered state c (Fig. 1 C and D). First,
we transformed these trajectory segments within state a into a list of 100
equally spaced coordinates rN = (r1, ...r100) along the trajectory using the
scipy.interpolate.interp1d function. The configuration r1 is the first configuration
after the load entered state a having exited state b; the configuration r100 is the
last configuration before the load exited states a and entered state c.

Then, using the skfmm.distance function, we calculated the distance in
configuration space of all rN to r100 and divided by the initial distance between
the starting and ending coordinates. The distance from c at a given fraction N/100
of path length after entering state a from state b is then rnorm

N = ‖rN−r100‖
‖r1−r100‖

.
Heat maps based on these data are shown in Fig. 4A and SI Appendix, Fig. S6B.

Depth-First Search. We assigned a depth to every state and transition region,
which form the nodes of our graph (Fig. 4B), which quantifies the minimal
number of transitions between states and transition regions necessary to reach
the initial node. Transition regions (SI Appendix, Fig. S1 D and E) are dead-
ends of the graph. For every trajectory of human solvers, we find the fraction
of transitions that concur with a depth-first search. Each transition consists of
a starting and target node. After entering a new state, the starting node is the
former state, and the target node is the current state. After entering a transition
region, the starting node is the current state, and the target node is the adjacent
state, denoted in the subscript. A transition concurs with a depth-first search if
1) the depth of the target node is equal to or larger than that of the starting
node, and the target node has not been visited previously, or 2) since the last
visit to a dead-end, the target nodes have consistently had smaller depths than
the respective starting nodes. Symmetric regions, such as be and b′e, constitute
different nodes, meaning that the solver can visit both regions without violating
the depth-first search heuristic. Further, under these rules, we assume that
solvers can exclude edges beforehand and, therefore, not visit them without
violating the depth-first search. For example, a solver can move through nodes
a → b → be → b → a without visiting nodes bf2, bf1 and b′e without
violating the depth-first search, as we assume that they previously excluded
them. The two primary reasons for people to deviate from this heuristic were,
first, reentering the same transition region in an attempt to traverse a nonexistent
edge and, second, failing to traverse an existent edge (e.g., f → h), resulting
in a return to previously pruned edges.

Decision Forks. A decision fork is defined by, first, a starting condition,
which is either the initial configuration in state a or a previous successfully
or unsuccessfully attempted edge traversal, and, second, two yet untested
edges: the “greedy” and “indirect” edge. The five most common decision forks
highlighted in SI Appendix, Fig. S7 B and C and Fig. 4C are

(1) At the beginning of the attempt in state a: greedy edge a→ b or indirect
edge a→ c,

(2) After passing edge a→ b: greedy edge b→ f or indirect edge b→ e.
(3) After attempting to pass edge b→ f : greedy edge b 6→ e or indirect edge

a→ c.
(4) After passing from edge a → c: greedy edge c 6→ g or indirect edge

c→ e.
(5) After passing from edge c → e: greedy edge e → f or indirect edge

e 6→ g.

We treat symmetric edges (for example b 6→ e and b′ 6→ e′) as equivalent.
Note that at decision fork (5), the solver could also have chosen first to attempt
passing edge e 6→ b, before edges e → f or e 6→ g. However, this never
occurred, as it would have led the solver against the exit direction. Therefore, we
do not include this option.

Simulations of Human Decisions at Decision Forks. To analyze how the
opinions of individuals in a group with restricted communication translate to a
common decision, we employed a simple agent-based simulation that involved
the following steps: first, opinions, either aligning with the greedy opinion
(opinion 1) or indirect opinion (opinion 0), were assigned to N agents (medium
group: N = 8, large group: N = 21), according to the probability of a single
person at each of the five decision forks (Fig. 4C). Then, with probability p, every
agent switched to opinion 1, though previously they held opinion 0. We then
determined the group’s decisions as follows: at decision forks (1) and (3), the
entire group performs a majority vote (SI Appendix, Fig. S7B). At decision forks
(2), (4), and (5), the majority vote only occurs among a randomly chosen quarter
of all agents, as a fraction of the group primarily determined the next attempted
edge traversal (SI Appendix, Fig. S7C). If, in the majority vote, there were an
equal number of participants voting for opinions 0 and 1, the group decided for
opinion 0 or 1 with equal probability. We repeated the simulation 2,000 times
and averaged over all the groups’ decisions. By adjusting only parameter P, we
find that setting P = 0.2 yields good correspondence between the experimental
results (Fig. 4E), confirming our model choice.
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Statistical Information. Solving attempt repeat numbers, n, are given
in SI Appendix, Tables S1 (experiments) and S2 (simulations). The force
measurement plots shown in Fig. 4E were based on 8 and 5 experi-
ments in which force meters were functioning reliably for the groups with
communication or restricted communication, respectively. All other plots
incorporate measurements from all experiments and simulations unless
otherwise stated. In all plots, the mean served as the measure of central
tendency, and error bars reflected ±1 SE of the mean unless otherwise
noted.

Data, Materials, and Software Availability. All study data are included in
the article and/or supporting information.
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